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Abstract: The transition state theory of chemical reactions rests on the assumption that motion along a reaction 
path is separable from motion in directions transverse to it and that the latter are adiabatic, i.e., that their quantum 
numbers are preserved as the reaction proceeds. This assumption requires that, in calculating quantum mechanical 
tunneling factors, the zero-point energy of the transverse motions be added to the potential energy along the 
reaction path to furnish an effective vibrational^ adiabatic barrier which should be used in such calculations. 
AU tunneling calculations reported so far have neglected such zero-point energy corrections or used unrealistic 
approximations for them, and most have also replaced the reaction barrier by approximate analytical fits for which 
transmission probabilities could be determined analytically. We have performed accurate quantum mechanical 
calculations by numerical techniques for the collinear exchange reactions of H + H2 and D + D2 and reached the 
following conclusions. (1) The results of transmission probability and tunneling factor calculations from Eckart 
potential fits to the potential energy barrier lead to substantial systematic errors, especially at low temperatures, 
and therefore should not be used. Further, correcting Shavitt's calculations to eliminate his numerical approxi­
mations brings the model he used into better agreement with experiment. (2) The results of calculations ignoring 
the zero-point energy of the transverse motion and its variation along the reaction path are dramatically different 
from the ones including it. Since the latter are in accord with the adiabatic derivation of transition state theory 
and the former are not, agreement of the latter with gas-phase experiments must be considered the result of for­
tuitous cancellations of errors and should not be construed as support for the assumption behind the theory. 

In the past few years, noteworthy progress in the cal­
culation of scattering probabilities and cross sec­

tions for single collisions of molecules and atoms has 
been made. Nevertheless, computations of tunneling 
factors to be used in the transition state theory of the 
rates of bimolecular gas phase chemical reactions have 
still usually been made using simplified models recom­
mended mainly by their computational simplicity. In 
particular, the analytic solution for the scattering prob­
abilities of a parabolic barrier4 and Eckart's analytic 
solution for the scattering off a more realistic barrier5 

(which is now called the Eckart barrier) have been 
widely used. These barriers have fixed shapes and do 
not usually represent adequately the potential energy 
barrier for the particular reaction of interest; they lead 
at times to large errors. 

In the present article we present a numerical method 
for calculating exact scattering probabilities (probabil­
ities of tunneling through barriers and of nonclassical 
reflection of particles incident on a barrier which is too 
low to cause reflections according to classical mechan­
ics) for general one-dimensional barriers. Then we 
apply this to realistic approximations to the potential 
barrier for the H + H2 reaction. 

Transition state theory6-8 has been very important in 
the history, understanding, and practical applications of 
chemical kinetics (transition state theory is also called 
absolute reaction rate theory; a recent exposition of its 
application is given in Johnston's book9). An impor-
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tant part of transition state theory96 is the assumption 
that in the neighborhood of the transition state motion 
along the direction of a one-dimensional reaction path 
can be separated from the other motions of the reacting 
system and that a potential energy can be defined for 
motion along this path. This path can be extended to 
reach to reactants and products; we refer to the ex­
tended path, which is defined to be the minimum po­
tential energy path from reactants to products, as the 
reaction path. The potential, as a function of the reac­
tion coordinate s (distance along the reaction path), 
usually involves a barrier between reactants and prod­
ucts. This is the classical potential energy barrier 
V(s). The effect of quantum mechanical tunneling 
through this barrier is included in the transmission co­
efficient (Boltzmann tunneling factor) which occurs in 
transition state theory. It usually has a very important 
effect on the calculated rate constants for light atoms or 
molecules. In the next section we review the work that 
has been done on calculating quantum mechanical 
transmission coefficients for transition state theory. 
Then we discuss what is the theoretically most justi­
fiable way of calculating such coefficients. In the rest 
of the article, we present the results of numerical cal­
culations done this way and show how they differ from 
those obtained by previous treatments. 

Mortensen10 has previously used numerical calcula­
tions of scattering probabilities from multidimensional 
barriers of general shape to calculate transmission co­
efficients for transition state theory. That is an exten­
sion of the usual transition state theory. Belford, 
et a/.,11 have calculated exact transmission functions of 
electrons through one-dimensional image barriers. 

(9) H. S. Johnston, "Gas Phase Reaction Rate Theory," Ronald 
Press, New York, N. Y., 1966; (a) pp 133 ff, 190 ff, 230 ff; (b) p 235; 
(c) pp 193 ff; (d) Chapter 5 and Appendix C; (e) Chapter 8, sections 
D and E. 

(10) E. M. Mortensen, J. Chem. Phys., 48, 4029 (1968). 
(11) G. G. Belford, A. Kuppermann, and T. E. Phipps, Phys. Rev., 

128, 524 (1962). 
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Figure 1. Two-dimensional orthogonal coordinate system for the 
linear reaction A + BC -*• AB + C. The path b from I to F is the 
path of minimum potential energy. T is the transition state. The 
path a from H to G corresponds to the asymmetric stretch normal-
mode motion of the transition state and is tangential to the reaction 
path b at the saddle point T. Paths 1, 2, and 3 represent the trans­
verse motion at several positions on path b. They are respectively 
the vibration of BC, the symmetric stretching vibration of ABC at 
the transition state, and the vibration of AB. 

Recently, Wyatt12 and LeRoy, et a/.,13 have used similar 
methods for the transmission of particles through reac­
tive-scattering-type one-dimensional barriers. Any of 
these methods could be used as an alternative to the one 
presented here. Child14 and Connor15 have considered 
semiclassical methods of calculating transmission func­
tions for general one-dimensional barriers; their 
methods also provide useful alternatives for some cases. 

Theory 
Previous Treatments of Tunneling in One Mathemat­

ical Dimension. There are three basic approaches to 
the tunneling correction to transition state theory. 
The first is to consider it as a quantum mechanical 
correction to the (assumed separable) asymmetric-
stretch rectilinear-coordinate normal-mode motion of 
the transition state. 9a>16-18 This procedure considers 
tunneling along path a (see Figures 1 and 2). The 
other two approaches consider tunneling along the 
reaction path b (or c). The second approach is to con­
sider the tunneling as a correction to the (assumed sep­
arable) motion along this path in a modified transition 
state theory which treats all modes consistently in­
cluding effects associated with the path's curvature.19'20 

Therefore, these curvilinear effects can be included con­
sistently in the tunneling correction. This treatment, 
unlike the first approach, may be applicable even if the 
de Broglie wavelength for the motion along the poten­
tial surface is large compared to the size of the quad­
ratic region of the saddlepoint region. The third ap­
proach (the one of most interest in this article) con­
siders the tunneling correction as a transmission co­
efficient for the standard rectilinear-coordinate transi-

(12) R. E. Wyatt, J. Chem. Phys., 51, 3489 (1969). 
(13) R. J. LeRoy, K. A. Quickert, and D. J. LeRoy, Trans. Fara­

day Soc, in press; University of Wisconsin Theoretical Chemistry 
Laboratory Technical Report No. WIS-TCI-384, 1970. 

(14) M. S. Child, MoI, Phys., 12,401 (1967). 
(15) J. N. L. Connor, ibid., 15, 37 (1968). 
(16) H. S. Johnston and D. Rapp, J. Amer. Chem. Soc, 83, 1 (1961). 
(17) H. S. Johnston, Advan. Chem. Phys., 3, 131 (1961). 
(18) H. S. Johnston and J. Heicklen, J. Phys. Chem., 66, 532 (1962). 
(19) R. A. Marcus, / . Chem. Phys., 41, 610 (1964). 
(20) R. A. Marcus, ibid., 41, 2614 (1964). 

Reaction Coordinate s 

Figure 2. Barrier along various paths through the potential energy 
surface. Paths a and b are shown in Figure 1. Path c is the path 
of minimum potential energy in a transition state normal-mode co­
ordinate system in which the cross term in the kinetic energy van­
ishes and the reduced mass is the same for motion in all directions 
(see ref 9d). This is a schematic figure for a general reaction with a 
symmetric surface. 

tion state theory (as given, e.g., in ref 9), but may in­
clude in it any estimable effects due to the curvature of 
the reaction path or to the nonseparability of the multi­
dimensional motion into motion along the reaction 
path and other motions. Based on these approaches, 
various models (with different criteria for choosing the 
parameters) and various numerical methods have been 
used. In this subsection we review the calculations that 
have been done by other authors. In the next subsec­
tion we critically discuss the models behind these cal­
culations, and in the rest of the Theory section we discuss 
normal-mode coordinates and the numerical methods 
used in our calculations. 

One of the usual methods to calculate a tunneling 
correction is to replace the classical potential energy 
barrier by a parabolic barrier which in one way or 
another approximates the true potential. The quantum 
mechanical transmission through this barrier can then 
be treated approximately2122 or by the exact analytical 
methods worked out by Bell23 and others.4'24-28 

Many such applications have been made.7'9b'16'17'19'22'24'29-38 

Another model potential for which an exact analyt­
ical solution is possible is the one worked out by 
Eckart5 and others. 16'1S-39 For symmetric surfaces 
this barrier has two independent parameters. In ap­
plications, one has always been determined by the re­
quirement that the curvature at the top of the barrier be 
equal to the curvature at the top of the classical poten­
tial energy barrier. Various procedures have been 

(21) E. P. Wigner, Z. Phys. Chem., Abt. B, 19, 203 (1932). 
(22) I. Shavitt, / . Chem. Phys., 31, 1359 (1959). 
(23) R. P. Bell, Trans. Faraday Soc, 55, 1 (1959). 
(24) J. Bigeleisen, F. S. Klein, R. E. Weston, and M. Wolfsberg, 

/ . Chem. Phys., 30, 1340 (1959). 
(25) T. E. Sharp and H. S. Johnston, ibid., 37, 1541 (1962). 
(26) R. E. Weston, ibid., 31, 892 (1959). 
(27) R. E. Weston, Discuss. Faraday Soc, 44, 163 (1968). 
(28) R. A. Marcus, ibid., 44, 167 (1968). 
(29) J. Bigeleisen, J. Chem. Phys., 17, 675 (1949). 
(30) J. C. Polanyi, ibid., 23, 1505 (1955). 
(31) I. Yasumori, Bull. Chem.Soc. Jap., 32,1103, 1110(1959). 
(32) G. Chiltz, R. Eckling, P. Goldfinger, G. Huybrechts, H. S. 

Johnston, L. Meyers, and G. Verbeke, / . Chem. Phys., 38, 1053 (1963). 
(33) R. B. Timmons and R. E. Weston, Ibid., 41, 1654 (1964). 
(34) F. Klein, A. Persky, and R. E. Weston, ibid., 41, 1799 (1964). 
(35) D. J. LeRoy, B. A. Ridley, and K. A. Quickert, Discuss. Faraday 

Soc, 44, 92 (1968). 
(36) I. Shavitt, / . Chem. Phys., 49, 4048 (1968). 
(37) C. A. Parr, Ph.D. Thesis, the California Institute of Technology, 

Pasadena, Calif., 1968. 
(38) W. R. Schulz and D. J. LeRoy, / . Chem. Phys., 42, 3869 (1965). 
(39) H. Shin, ibid., 39, 2934 (1963). 
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used to assign the other parameter9^'16-19'22'32-34"36-38-40-43 

so as to make the Eckart barrier approximate in one 
form or another the correct classical potential en­
ergy barrier or the classical potential energy barrier 
along path a. In another procedure,10'19 the second 
parameter is chosen to make the barrier height equal 
V(O) + Z(O) - Z ( - oo), where F(O) is the classical poten­
tial energy barrier height, Z(O) is the harmonic approxi­
mation to the zero-point vibrational energy of the 
transition state, and Z(— <*>) is the harmonic approxima­
tion to the reactant's zero-point vibrational energy. 
This is an attempt to include effects due to the non-
separability of the motion along the reaction path from 
the other motions of the system. Johnston and Rapp 
developed an approximation to the two-mathematical-
dimension tunneling problem (hereafter denoted by 2-
MD) which describes exchange reactions of the type 
A + BC -* AB + C, where the three atoms A, B, and C 
are confined to remain on a straight line. It consists 
in taking a Boltzmann average of Eckart tunneling cor­
rections for several paths parallel to the a path in 
Figure 1.16 It has been applied frequently.93'16-26'32-34'44'46 

A version of this "2-MD" tunneling correction with a 
modified definition of the Eckart barriers has also been 
used.42 

Transition State Theory. The transition state trans­
mission coefficient is a quantum mechanical correction 
to the motion along the reaction path. It has been 
pointed out many times that the transition state theory 
results if one assumes a Boltzmann distribution of reac-
tant energies and that all modes of motion of the system, 
except the separable motion along the reaction 
path, are adiabatic.8-46~48 By this it is meant that the 
quantum numbers of these modes are conserved as 
motion along the reaction path proceeds. Let the re­
action coordinate 5 vary from — oo for the reactant 
configuration to zero for the top of the barrier to 
+ as for the product configuration. The conserved 
total energy in the center-of-mass system is the sum 
E = Et(s) + Ea(s), where E1 is the energy in the reac­
tion mode and Ea is the energy in the other modes 
(the a or nonreactive modes). The reason that Ea is 
a function of s is that as we move along the reaction 
path, the potential energy function along the trans­
verse directions varies, resulting in a change of the en­
ergies of the corresponding quantum states. Based on 
this adiabatic hypothesis, we calculate Ea along the 
path b (or c) (the path of minimum energy from reac-
tants to products) to find its highest value Ea(0). Then, 
classically, reaction occurs for all £r( — <») such that 
ET(0) > 0. Thus, as Hirschfelder and coworkers8'46 and 
Marcus47 have pointed out, the potential energy which 
is responsible for motion of the system along the reac­
tion path is the quantum mechanical adiabatic energy 
of the nonreactive modes of motion of the system (i.e., 

(40) J. H. Sullivan, J. Chem. Phys., 39, 3001 (1963). 
(41) H. S. Johnston and P. Goldfinger, ibid., 37, 700 (1962). 
(42) C. L. Kibby and R. E. Weston, Jr., ibid., 49, 4825 (1968). 
(43) M. J. Kurylo, G. A. Hollinden, and R. B. Timmons, ibid., 52, 

1773 (1970). 
(44) H. Carmichael and H. S. Johnston, ibid., 41, 1975 (1964). 
(45) R. L. Wilkins, ibid., 42, 806 (1965). 
(46) M. A. Eliason and J. O. Hirschfelder, ibid., 30, 1426 (1959). 
(47) R. A. Marcus, ibid., 46, 959 (1967). 
(48) It was recently pointed out that this is true only at low tempera­

ture; see D. G. Truhlar, ibid., 53, 2041 (1970). However, this cor­
rection to the adiabatic derivation of transition state theory is not of 
interest in the present article. 

the energy Ea(s) of the system-minus-the-reaction 
mode). Although other interpretations of the transi­
tion state theory are possible, we believe this is the most 
reasonable one for discussing tunneling corrections. 
This interpretation disagrees with most of the calcula­
tions described in the previous section and especially 
with the statement that "the quantum correction for one 
supposedly separable coordinate does not constitute 
potential energy for the reaction coordinate."90 We 
consider this statement inconsistent with a proper inter­
pretation of transition state theory. Marcus47'49 em­
phasized the point of view adopted here and its impor­
tance in tunneling calculations (for the purposes of illus­
tration Marcus did calculations19'49 using the barrier 
height obtained from a vibrational^ adiabatic treat­
ment, but he approximated the force constant asso­
ciated to motion along the reaction path by the force 
constant computed from the classical potential energy 
barrier instead of from the quantum mechanical adia­
batic one described below). 

For a linear atom-diatomic molecule collision A + 
BC, the only mode of motion besides the one along the 
reaction path (i.e., the only nonreactive mode of mo­
tion) is successively a vibration of BC (when A and BC 
are far apart), a symmetric stretching vibration of ABC 
(at the transition state), and a vibration of AB (when 
AB and C are far apart) as indicated, respectively, by 
lines 1, 2, and 3 of Figure 1. Representing by t the 
corresponding transverse coordinate, the potential en­
ergy function Us(t) associated with this motion varies 
parametrically with the reaction coordinate in a con­
tinuous manner. For s -+• — oo it is the potential en­
ergy for BC, for 5 = 0 it is the transition state symmetric 
stretch potential energy, and for 5 -*• + oo it is the poten­
tial energy for AB. The potential energy for the reac­
tion coordinate mode of motion is the classical poten­
tial energy (the one due to treating electronic motion 
quantum mechanically within the framework of the 
Born-Oppenheimer approximation and neglecting zero-
point vibrational energy everywhere) plus the adiabatic 
vibrational energy in the nonreactive mode. Neglect­
ing the change in energy in this mode associated with 
conservation of its quantum number and variation of 
Us(t) with s is treating it as inactive in Marcus' termi­
nology.60 We will call this neglect the conservation of 
vibrational energy (in the nonreactive mode) model. 
In it, the potential energy for motion along the reaction 
coordinate is determined entirely by the classical poten­
tial energy. It is expected to be a bad approximation 
for many reactions, including H + H2. The model in 
which the quantum numbers of the nonreactive modes 
do not change is called the vibrationally adiabatic model 
and is, as mentioned above, the one from which transi­
tion state theory is most naturally derived. 

For a collision in a plane or a collision in three-di­
mensional space we would also have to consider the 
adiabatic transformation of the rotations of the sep­
arated molecule and the orbital motion of A with re­
spect to BC into bending vibrations and rotations as the 
reagents approach the transition state. For the planar 
H + H2 case, the adiabatic energies of the rotations and 
bends have been worked out by Child51 and Marcus.52 

(49) R. A. Marcus, ibid., 45, 4493 (1966). 
(50) R. A. Marcus, ibid., 20, 359 (1952). 
(51) M. S. Child, Discuss. Faraday Soc, 44, 68 (1968). 
(52) R. A. Marcus, J. Chem. Phys., 49, 2617 (1968). 

Journal of the American Chemical Society / 93:8 j April 21, 1971 



For the three-dimensional collision, an approximate 
consideration of this correlation has been worked out 
by Mortensen and Pitzer for the lowest rotational state 
of the separated molecule.53 The adiabatic assumption 
is not expected to be as good an approximation for these 
rotations, orbital motions, and bending modes as it is 
for the vibrational transverse a mode of the collinear 
H + H2 reaction.62-54 In this article we make calcula­
tions only for linear collisions. 

Normal-Mode Coordinates. For the computation 
of tunneling corrections to transition state theory, we 
must obtain the effective potential as a function of a 
reaction coordinate s. This coordinate is a distance 
measured along a reaction path. Rather than choos­
ing the path b of minimum energy in RAB,RBC con­
figuration space, we take it as the path c of minimum 
energy in the transition state normal-mode coordinate 
space. 

The transition state normal-mode coordinates for a 
linear A + BC reaction,9"1 which we shall denote by 
Xi and X2, are defined in such a way that the potential 
and kinetic energy functions are given, respectively, by 

V = V2Jc1Xi2 + V2Zc2X2
2 + higher order terms (1) 

K = 1A M.V(*I2 + *22) (2) 

where xt is the time derivative of xt, fa is the symmetric 
stretch force constant, fa is a negative number (the asym­
metric stretch force constant), and the coordinates of 
the saddle point are Xi = X2 = 0. This means that the 
effective reduced mass ^N- is the same for both normal 
modes; i.e., it does not depend on the direction of mo­
tion in the two-dimensional space defined by this co­
ordinate system. In addition, in the vicinity of the 
saddle point the potential and kinetic energy are simul­
taneously diagonal, and the motion is therefore sep­
arable in these coordinates. The normal-mode motion 
along X2 (for Xi = 0) represents the asymmetric stretch 
of the transition state and corresponds to the motion 
which leads to reaction (path a of Figure 1), whereas 
the motion along X1 (for x2 = 0) represents the sym­
metric stretch motion of the transition state (path 2 of 
Figure 1). Motion along x2 is transverse (i.e., orthog­
onal) to motion along xx. 

The separability, just mentioned, of the motion in the 
vicinity of the transition state is an important factor 
dictating the choice of the normal-mode coordinate 
system as the system in which the reaction path is to be 
defined for the purpose of determining the tunneling 
correction. Taking the saddle point as the common 
origin for measurement of both s and X2, these two co­
ordinates are almost equal near this point (where the 
reaction path is tangent to the x2 axis), but differ else­
where. 

For the linear H + H2 or D + D2 system, with the 
saddle point at RAB = RBC = Ro, the normal-mode co­
ordinate analysis furnishes 

xi = (V3/2)(*A B + RBC ~ 2Ro) (3) 

X2 = (l/2)(KBc - #AB) (4) 
M^ = (2/3)mA (5) 

(53) E. M. Mortensen and K. S. Pitzer, Chem. Soc, Spec. Publ., No. 
16, 57 (1962). 

(54) Reference 49 (see especially footnote 13); M. Karplus, Discuss. 
Faraday Soc, 44, 91 (1968), including his footnotes 2 and 3; R. A. 
Marcus, ibid., 44, 166 (1968). 

1843 

Figure 3. Reaction path c in normal-mode coordinate space xi, 
Xi. The RK-B, RBC values corresponding to an arbitrary point P on 
this path are indicated. The point T is the saddle point (classical 
transition state). Reaction path b is slightly different, but the dif­
ference would not show up clearly in this figure. 

where mA is the atomic mass. These are the normal 
mode coordinates used by Shavitt.36 

Figure 3 indicates the reaction path c for the H + H2 

reaction in this normal-mode coordinate space. Reac­
tion path b, although different, is close enough to path 
c for the differences not to show up clearly on the scale 
in which Figure 3 was drawn. The RBC = 0 and 
RAB = 0 lines can be considered as the RAB and RBC 

axis, respectively, in an oblique system of Cartesian co­
ordinates for which the angle between the axes is 60°. 
This oblique system differs from the orthogonal RAB, 
RBC system of Figure 1 in the sense that the kinetic en­
ergy is diagonal in the former but not in the latter. It 
can be seen that the reaction paths have appreciable 
curvatures in the vicinity of the transition state. The 
potential energy surface from which these reaction 
paths are obtained is described in the Calculations 
section. The potential energy along the reaction path c 
as a function of the curvilinear distance s is considered to 
be a barrier along one Cartesian dimension 5 for the cal­
culation of the tunneling coefficient; i.e., we neglect 
reaction-path curvature in the stage of the calculation 
considered next. 

Numerical Treatment of One-Dimensional Tunneling. 
The Schroedinger equation for one-dimensional motion 
along a reaction path in normal-coordinate space is, 
in any units for which H=I 

_- i l 2 + ™ - £>*(5) = ° (6) 

where V(s) is an effective potential energy function, 
which is defined differently in different models, and E is 
the total energy of the system. The distance 5 along 
the reaction path in normal coordinate space is cal­
culated by numerical line integration using a sufficiently 
fine grid (points about 0.06 a0 apart) to achieve an ac­
curacy of about 0.001 a0. The index k labels degen­
erate solutions of equal energy. Of these solutions, a 
maximum of two can be linearly independent. To 
solve this equation for a given E we select a set of N 
evenly spaced mesh points st, i = 1, 2,. . ., N, with 
Si < Si+i, and approximate the second derivative in eq 
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4 by central differences of order 2 at these points in the 
standard way.65 This yields the set of N coupled 
linear equations 

where 

£(f*« - XS0WV = bt i 
; ' = 1 

1,2, . . . , JV (7) 

for the approximate values \ph
lk of the solutions MSJ) 

at the mesh points. In eq 7 

X = -2 / i 2 £ (8) 

h = 54+i - st (9) 

F\, = - 2 [ ( 1 / M ^ ) + hW(Si)]5tj + 

(l/Mw)(8<,*-i + 5U+1) (10) 

b< = ( - 1 / M * X I M * - A)«.i + USN + A)5W] (11) 

where 5y is the Kronecker delta. As h -*• 0, the ap­
proximate solutions approach the exact ones, i.e. 

\pk(sj) = lim \l/h
k(sj) (12) 

We choose si = — sN and % to be large enough for 
V(si) to be negligible, i.e. 

V(sx) « V(O) 

V(S1) « F(O) 

(13) 

(14) 

where K(O) is the height of the barrier. 
The strategy of the method for finding solutions to eq 

6 for a given E which corresponds as s -*•—<» to an 
incident wave plus a superimposed reflected wave, and 
as s -*• co to a transmitted wave, is to first find two 
linearly independent solutions and impose these bound­
ary conditions a posteriori on a linear combination of 
these two solutions. This is essentially an application 
to one-dimension barriers of the finite difference boun­
dary value method of Diestler and McKoy.66 We 
choose as the first independent solution the one which 
satisfies the arbitrary boundary conditions 

Hsi - h) = 1 

<M% + h) = 0 

(15) 

(16) 

and as the second the one for which the boundary con­
ditions are 

*i(si - A) = 0 

Ms* + h) = 1 

(17) 

(18) 

These choices are convenient in that they make these 
wave functions real everywhere. Since we are consid­
ering the case where the barrier is symmetrical about 
s = 0, we need not obtain the second solution by 
solving the set of eq 7 because we can obtain it from the 
first by reflection through ^ = O. The asymptotic 
form of the solutions to the Schroedinger equation is 

Ms) ~ Ake~tJ" + Ake^ (19) 
S —*• co 

Ms) ~ «4e-'»" + ake^s (20) 

(55) L. Fox, "The Numerical Solution of Two-Point Boundary Value 
Problems in Ordinary Differential Equations," Clarendon Press, 
Oxford, 1957, pp 6-11. 

(56) M. M. Pennell and L. M. Delves, J. Math. Computation, 15, 243 
(1961); D. J. Diestler and V. McKoy, J. Chem. Phys., 48, 2941, 2951 
(1968); V. P. Gutschick, V. McKoy, and D. J. Diestler, ibid., 52, 4807 
(1970). 

p = (IHNE) VJ (21) 

(since h = 1) and we do not use the bar to mean com­
plex conjugate. We want to analyze the i/'V for large 
and smally (corresponding to large \s\) in the same way 
as \pk(

s)- For large j , corresponding to the asymptotic 
region of the products, we have 

and 

A\e-i^ + A V ' = V* 

A\e-ip^ + A V ' + ' = Vi+i.k 

(22) 

(23) 

where / is a small integer (usually_ equal to 1 or 2). 
Solving these equations for Ah

h and Ah
k gives 

A\ = ( ^ V - *V-i.*ett*')/0 (24) 

A\ = A»\ (25) 

D = 2/ sin (plh) (26) 

Equation 25 results from the fact that the i /V' s a r e 

real. For small j , an
k and a"k are given by similar 

equations. We consider the particle to be incident 
from the right of the barrier. The solution we seek has 
A = 1 and 5 = 0, i.e. 

Ms) + Ae1' 

Hs) ae 
-ips 

(27) 

We can obtain this solution as a linear combination of 
any two linearly independent solutions. In terms of 
our approximate solutions we seek the linear combina­
tion of the independent solutions \p"j1 and \f>hj2 

VJ = E c\y. Ik (28) 

for which the coefficients satisfy the boundary condition 
relations 

T,C\A\ = 1 
fc-1 

E C\a\ 

(29) 

(30) 

Equations 29 and 30 can be written in matrix form as 

A*C* I ' 

or 

a \ 

(31) 

(32) 

The probability of reflection from the barrier (R) and 
the probability of transmission across it (T) are given in 
terms of the asymptotic form of the solution \ph

} with 
scattering boundary conditions given by eq 29 and 30 by 

R = Hm 

T = lim 
A—0 

S C\A\ 
t - i 

"LCkA> 

2 = \J2 c*a* 

(33) 

(34) 

For the case of symmetric potentials the only properties 
of the second linearly independent solution necessary 
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for obtaining R and T are 

At = ffii (35) 

A2 = on (36) 

a, = A1 (37) 

«2 = A\ (38) 

The results can be obtained to an arbitrary accuracy 
without taking the limit in eq 33-34 by using small 
enough h. This procedure was programmed in FOR­
TRAN iv for the Caltech IBM 7094 computer and the 
program was checked by computing R and T for the 
H + H2 Eckart potential (which can also be obtained 
analytically as discussed above). In that case we could 
obtain R and T to an accuracy of 0.3% with N = 100 
and 0.04% with N = 400. For the H3 barriers we used 
N = 400 and sN = 4.0 to 8.0 a0. The computing time 
was about 1.0 sec per energy (at one energy we obtain 
one R and one T; the analysis of eq 24 and 25 was un­
necessarily done at six pairs of s( as a consistency check). 

Calculations 

An Accurate Analytic Potential Energy Surface for 
H3. We may consider the H + H2 reaction as proceed­
ing in the ground electronic state with the nuclear mo­
tion determined by an effective potential calculated 
using the Born-Oppenheimer separation of electronic 
and nuclear motions. This potential has been calcu­
lated most accurately by Shavitt, Stevens, Minn, and 
Karplus (SSMK).67 Their results confirm the conclu­
sion of many earlier less accurate studies that the 
lowest energy reaction path for the H + H2 reaction 
corresponds to a linear collision and that the highest 
potential energy that must be achieved along this min­
imum energy path (or reaction path) occurs for the con­
figuration where the atoms are equally spaced on the 
line. The calculation predicts that this barrier height 
is 0.477 eV. Shavitt36 estimated that the best guess of 
the real barrier height, as determined by comparing 
transition state theory to the rate experiments of Wes-
tenberg and de Haas58 and others, is 0.424 eV. He sug­
gested that the SSMK surface be modified by scaling the 
barrier by a factor (0.424/0.477) = 0.89 along the entire 
reaction path and that the curvatures at the barrier top 
(which is the transition state saddle point of the poten­
tial energy surface) in directions transverse to the reac­
tion path be kept unchanged. This prescription deter­
mines the modified surface along the whole reaction 
path and over a small region close to it near the saddle 
point, but does not specify it elsewhere. We will as­
sume that for linear collisions the transverse curvature 
along the entire reaction path is also unchanged. 

Shavitt, et al., fit their potential energy surface for 
linear collisions to an analytic function of the inter-
nuclear distances with 29 parameters.57 This is a fit to 
the surface before scaling. 

One-Dimensional Potential Energy Barriers, Including 
the Vibrationally Adiabatic Potential Energy Barrier. 
Shavitt, Stevens, Minn, and Karplus67 computed the 
"minimum energy reaction path" b for the H + H2 

reaction in i?AB,^Bc space. The coordinates of some 

(57) I. Shavitt, R. M. Stevens, F. L. Minn, and M. Karplus, / . Chem. 
Phys., 48, 2700 (1968); see corrections for linear configurations in foot­
note 13 ofref36. 

(58) A. A. Westenberg and N. de Haas, ibid., 47, 1393 (1967). 

points on their minimum energy path are given in Table 
VIII of ref 57. The energy as a function of distance 
along this path as plotted in the normal-coordinate 
space was used as the best approximation to the un­
sealed barrier by Shavitt.36 However, the minimum-
energy reaction path of interest in transition state 
theory is the path c of steepest descent in the nor­
mal mode coordinate space from the transition state 
(saddle point of the potential energy surface) to the 
reactants' configuration or, equivalently, the path of 
steepest ascent from the reactants' configuration to 
the transition state. This path c is different from 
path b of steepest descent and ascent in the .RAB.-KBC 
space. We determined path c for the SSMK surface 
from the 29-parameter fit.59 It is represented in Table 
I by pairs of -RAB^BC values. The corresponding 

Table I. Points on the Minimum-Energy Path c in Normal-Mode 
Coordinate Space for the H + H2 Reaction" 

Rx* 

1.765 
1.784 
1.808 
1.867 
1.925 
2.045 
2.111 
2.162 
2.235 
2.299 
2.409 
2.479 
2.547 
2.614 
2.681 
2.744 
2.822 
2.900 
2.965 
3.031 
3.093 
3.153 
3.212 
3.300 
3.518 
3.582 

•RBC 

1.765 
1.745 
1.720 
1.671 
1.623 
1.555 
1.525 
1.505 
1.483 
1.467 
1.448 
1.439 
1.432 
1.426 
1.421 
1.417 
1.414 
1.411 
1.409 
1.407 
1.406 
1.405 
1.404 
1.403 
1.402 
1.401 

" Distances are in bohrs. 

normal coordinate pairs x\,xz can be obtained from eq 
3 and 4. This path is plotted in Figure 3, and it did 
indeed turn out to be different from the one given in ref 
57 and plotted in ref 36. The distances s were cal­
culated by numerical line integration in normal-mode 
coordinate space along each of the reaction paths b 
and c, using the saddle point as the origin. The re­
sulting effective one-dimensional barriers for motion 
(with reduced mass ^N) along these reaction paths are 
given in Table II. The first one, for reaction path b, 
will be called the Shavitt barrier.™ These barriers have 
already been scaled by 0.89. For convenience in cal­
culating the tunneling correction, we performed a 

(59) This path cannot be determined by fixing Xi (or Xi) and finding 
the Xi (or xi) for which the potential energy is minimized. It must be 
found iteratively by minimizing the potential energy along the lines 
perpendicular to the reaction path. The whole calculation is performed 
in the x\,xi space. Perpendicular lines in the RAB.RBC space do not 
generally transform into perpendicular lines in the x\,xi space. 
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Figure 4. Potential energy barriers for the collinear H + H2 as a 
function of distance s along the reaction path c (in the normal-
coordinate space) from the saddle point of the surface: V, classical 
conservation-of-vibrational-energy barrier; V11, quantum mechani­
cal vibrationally adiabatic barrier. In the region indicated with 
the double-ended arrow the present V curve (reaction path c) is 
about 0.2 kcal/mol lower than Shavitt's barrier36 (reaction path b). 

least-squares fit of these barriers to expressions of the 
form 

V(s) = h sech2 (b3s
2) + b2 exp(-64s2) + 

(B - bi- bt) exp(-4Z>4s
2) (39) 

where B is the barrier height V(O) and the b{'s are given 
in Table II. The fits are illustrated in Table II, where 

Table II. Potential Energy Barriers from the SSMK Surface as 
a Function of Distance from the Saddle Point. The Barriers Have 
Been Scaled by 0.89. In Both Cases, Distances Are Measured in 
the Transition State Normal-Mode Coordinate System 

s, 
a0 

0.000 
0.104 
0.160 
0.226 
0.301 
0.385 
0.478 
0.585 
0.717 
0.852 
0.990 
1.131 
1.332 
1.542 
1.768 
1.998 
2.274 
2.500 

V, 
eV 

0.424 
0.417 
0.407 
0.393 
0.375 
0.353 
0.327 
0.297 
0.261 
0.225 
0.191 
0.159 
0.120 
0.087 
0.061 
0.041 
0.024 
0.019 

Via," 
eV 

0.424 
0.419 
0.411 
0.399 
0.381 
0.357 
0.329 
0.296 
0.257 
0.221 
0.188 
0.158 
0.122 
0.090 
0.063 
0.042 
0.024 
0.014 

s, 
a0 

0.000 
0.044 
0.099 
0.152 
0.257 
0.314 
0.358 
0.424 
0.482 
0.583 
0.649 
0.714 
0.843 
0.904 
1.056 
1.186 
1.306 
1.424 
1.546 
1.606 
1.671 

-Path cc— 
V, 
eV 

0.424 
0.422 
0.417 
0.408 
0.383 
0.367 
0.355 
0.336 
0.319 
0.289 
0.270 
0.252 
0.217 
0.202 
0.167 
0.141 
0.120 
0.101 
0.085 
0.078 
0.070 

f W 
eV 

0.424 
0.423 
0.418 
0.410 
0.387 
0.371 
0.358 
0.337 
0.319 
0.287 
0.267 
0.249 
0.215 
0.201 
0.168 
0.142 
0.121 
0.102 
0.085 
0.077 
0.068 

° References 36 and 57. This barrier was computed in normal-
mode coordinate space using the minimum-energy path obtained 
from SAB,RBC space. It is called the Shavitt barrier in this paper. 
6 From eq 39 with bi = 0.0850 eV, A2 = 0.2520 eV, b3 = 0.25602 
(bohr)-2, bt = 0.89044 (bohrT2. "Present. This barrier was 
computed in normal-mode coordinate space using the minimum 
energy path from this space (given in Table I). d From eq 39 with 
6i =0.1129eV,A2 = 0.2294eV,63 = 0.30855 (bohrT2, A4 = 1.11123 
(bohr)"2. 

the numbers in the columns labeled Viit are computed 
from eq 39. 

We reexpressed the 29-parameter fit to the SSMK po­
tential in normal coordinates and in this space com­
puted its second derivative in the direction perpen­
dicular to the reaction path c for points on this path. 
From this derivative at each of these points, we com­
puted the force constant and zero-point energy of a 
harmonic oscillator of mass nN. These zero-point 
energies define a function Z(s), which is the harmonic 
approximation to the zero-point energy of the motion 
transverse to the reaction coordinate. If Z(s) is added 
to the potential energy function V(s) along c (the 
"classical" or "conservation of vibrational energy" 
potential energy function) we get a "quantum" or 
"vibrationally adiabatic" barrier Vq(s) for the case 
when the reagent diatomic molecule is initially in its 
ground vibrational state. According to the interpreta­
tion of transition state theory used by Hirschfelder, 
Wigner, Eliason, and Marcus8'46'47 the one-dimensional 
transmission coefficient for ground-state reagent should 
be calculated using Vq(s) and not V(s). The trans­
mission coefficient for a vibrationally excited reagent 
state a should be computed from the barrier obtained 
by adding to V(s) the vibrational energy at position s of 
the transverse motion with the same quantum number 
a. Three Vq(s) barriers for H3 for the ground vibra­
tional state have been determined recently by Wyatt.12 

His formulation of the problem is different from the 
present one and the case he treats is a collision in more 
dimensions. 

The quantum barrier Vq(s) for the ground vibrational 
state was computed for the classical potential energy 
function given in column 5 of Table II. The quantity 
Kq(S) — Z(— oo) is given in Table III, where Z(— <») 
corresponds to the reagent configuration and is there­
fore the harmonic approximation to the zero-point 

Table III. Quantum Barrier as a Function of the Distance 
from the Saddle Point for the Ground Vibrational State 

s, a0 

Vr1 ~ Z(-
eV 

[PQ 
eV 

OW 

0.000 
0.044 
0.099 
0.152 
0.257 
0.314 
0.358 
0.424 
0.481 
0.583 
0.649 
0.714 
0.778 
9.843 
0.904 

056 
186 
306 
424 
484 
546 
606 

1.671 

0.277 
0.278 
0.277 
0.279 
0.277 
0.276 
0.276 
0.270 
0.263 
0.247 
0.235 
0.223 
0.210 
0.198 
0.186 
0.157 
0.134 
0.115 
0.098 
0.090 
0.083 
0.076 
0.072 

0.277 
0.277 
0.277 
0.276 
0.273 
0.270 
0.268 
0.263 
0.258 
0.247 
0.237 
0.227 
0.215 
0.202 
0.189 
0.156 
1.131 
0.112 
0.097 
0.090 
0.084 
0.079 
0.074 

° Fq is the sum of the scaled V(s) and the Z(s) along the reaction 
path c in normal-mode coordinate space obtained from the SSMK 
surface. b From eq 39 with Ai = 0.1099 eV, A2 = 0.1050 eV, A3 = 
0.952810 (bohr)-2, A4 = 0.178496 (bohr)"2, B = 0.2772 eV. 
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energy of the diatomic reagent. Vq(s) — Z(— co) was 
fit to an expression of the form of the right-hand side of 
eq 39 by the .least-squares method. The parameters of 
the fit and some values computed from it are also given 
in Table III. 

Figure 4 illustrates the V(s) and Vq(s) barriers for the 
scaled SSMK surface for linear H3. The Vq(s) barrier 
for the strictly linear collisions is 0.277 eV high and is 
about 0.4 a0 wider at the top than the classical barrier. 
Figure 4 shows that the Vq(s) barrier does not have a 
shape which could be accurately approximated by an 
Eckart barrier. 

One-dimensional scattering calculations off the two 
potentials V(s) and Vq(s) represent two distinct models 
of the reaction. Use of the classical potential V(s) 
assumes conservation of vibrational energy (CVE) in the 
mode of motion transverse to the reaction path c. Use 
of the quantum potential Vq(s) assumes conservation of 
vibrational quantum number (vibrational adiabaticity or 
VA) in that mode. The exact numerical solution of the 
scattering problem for these one-dimensional barriers 
will be discussed in the following subsections. 

The simplest interpretation of the vibrational adiaba­
ticity hypothesis is the one we use here, according to 
which the potential Vq(s) is constructed by adding the 
local vibrational energy of the nonreactive mode to the 
classical potential energy along the minimum energy 
reaction path. This is not a strictly correct treatment 
because the coordinates are nonseparable, partly due to 
the curvilinear nature of the reaction path. One im­
portant effect of the curvature of the minimum energy 
reaction path and the nonseparability of the Schroe-
dinger equation for the reaction coordinate and the trans­
verse vibrational coordinate is a "centrifugal effect." 
This and other corrections to the simple scheme used 
here have been considered by Marcus62'64'60 and 
Wyatt.12 

Calculation of Boltzmann Tunneling Factors (Trans­
mission Coefficients). The total energy of the reacting 
system A + BC in the center-of-mass coordinate sys­
tem is, in transition state theory 

E = Ex + E a + E a = Ex + Ea 
(40) 

= E+x + E\ 

where E1 is the initial relative translational energy, 
EK

a and £B C
a are the initial internal energies of A and 

BC, respectively, for the system in state a (a represents 
the set of all quantum numbers for the separated sub­
systems), and E+x is the energy available for motion 
along the reaction path at the transition state if the total 
internal energy in the other modes at the transition 
state is E+

a. Ea is the sum EA
a + EBC

a. Notice that 
EA

a, EBC
a, Ea, and E+

a include not only the internal 
energies in the nonreactive modes of nuclear motion 
but also the change in electronic energy as a function of 
the change in nuclear coordinates. In the CVE model, 
E+a = Ea + V(O), where V(O) is the classical barrier height. 
In the VA model E+a is the classical barrier height plus 
the energy of the transverse (nonreactive) nuclear mo­
tion modes of the system at the transition state for the 
same quantum numbers a as for the separated reagent 
configuration; and therefore E+a ^ Ea + V(O). 

In either of these models the Boltzmann tunneling 
factor (or transmission coefficient) K(T) is defined as 

(60) R. A. Marcus, J. Chem. Phys., 43, 2658 (1965). 

follows. Let T(EnCi) be the exact one-mathematical-
dimension (1-MD) transmission probability (or trans­
mission function) for the reaction path barrier being 
considered (either CVE or VA) and for the reagents in 
internal state a approaching each other with initial 
relative kinetic energy E1. The tunneling factor na(T) 
for state a at temperature T is, by definition 

KJT) = 
/ - • 

T(Er, a) exp( - E+xjkT)dE+ 

/

CO 

Tc\Ex,a) exp(-£+ r/fcr)d£+ r 
— co 

(41) 

where Tc\Ex,a) is the classical 1-MD transmission prob­
ability defined by 

Tc\Ex,a) = 1 for E+t > 0 

= 0 for E+t < 0 
(42) 

and Et depends on E+
T according to eq 40. The over­

all tunneling factor for all states is then defined in the 
usual transition state theory (cf. ref 47) as the Boltzmann 
average over the nonreactive mode states of the transi­
tion state 

K(T) = 

ZKa(T) txpi-E+JkT) 

Z^Pi-E+JkT) 
(43) 

Actually, the lower limits in the integrals in eq 41 
should be the value of E+x for which E1 = 0, since col­
lisions with Ex < 0 do not exist. However, making by 
definition T(Et,a) and Tc](Er,a) vanish for E1 < 0 per­
mits using — a= for those lower limits. According to 
eq 41, therefore, the tunneling factor Ka(T) is just the 
ratio of the averaged exact 1-MD quantum mechanical 
and classical transmission probabilities, where the 
weighting function is the Boltzmann factor for the 
energy E+

t available for reaction at the transition state. 
In view of eq 40, we can transform integration variables 
from E+

x to E1 and write eq 41, after cancellations of 
common factors in numerator and denominator, as 

/»co 

I T(Et,a) Qxp(-Ex/kT)dEx 

KaCD = ^ (44) / • co 

I Tc\ET,a) Qxp(-Et/kT)dEr 

This indicates that in the averaging just mentioned, the 
Boltzmann factor appropriate for initial relative kinetic 
energy may be used. In eq 44 the energy conditions at 
the transition state play no special role other than their 
implicit involvement in the transmission probabilities. 
Using eq 42, eq 41 and 44 can be put in the forms 

Ka(T) = (XIkT) T T(Ena) exp(-E+x/kT)dE+x (45) 
*J — CO 

and 

KJT) = (ev°/kTlkT) f T(Er,a) s\p(-Et/kT)dET (46) 

where Ex is related to E+x by eq 40 and 

V0 = E+a - Ea (47) 

K0 is the barrier height used to compute the difference 
in relative translational energies of the reagents and the 
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Figure 5. Transmission probability vs. reduced translational 
energy for H + H2. V0 is 0.424 eV for the three curves. For the 
dashed curve (usual Eckart barrier as described in text) and solid 
curve (barrier for reaction path c), E't is the initial relative kinetic 
energy Er. For the dotted curve (Shavitt's false-bottom barrier of 
height 0.174 eV), E\ is ET plus the 0.250-eV difference between the 
height of the asymptotic region for this barrier and the correct one. 

system at the classical transition state; i.e., it is the mini­
mum initial relative translational energy necessary to go 
classically over the one-dimensional barrier being used. 

For linear collisions H + H2 and D + D2 at tempera­
tures at which only the ground electronic and vibra­
tional states of the reagents are appreciably populated, 
K(T) is given by K0(T) and is therefore 

K(T) = (IjkT) f T(Er,0) e\p(-E+T/kT)dE+T (48) 
%} — GO 

where 

E+T = E - £+0 = ET+ E0 E+0 (49) 

Shavitt has shown how the integral (48) can be recast as 
the sum of two finite range integrals which can be easily 
integrated.61 He obtained accurate results (0.01%) 
using 200 points per integral. We have used his for­
mula (eq 27 of ref 61) for the integrals but evaluated 
them using Gaussian integration. By using 21 points 
per integral (42 energy points in all) we were able to ob­
tain accuracy usually much better than 1 %. 

Results 

In his paper on correlation of experimental rate con­
stants with theoretical data on the H3 potential energy, 
Shavitt36 used the CVE model where V0 = F(O). He 
represented the scaled SSMK classical potential energy 
barrier (the Shavitt barrier) by an Eckart potential 
having the correct curvature at its maximum and giving 
a good fit "over as much of its upper part as possible." 
He reasoned that the transmission probability is deter­
mined by the nature of the potential barrier in the region 
where \s\ is small, i.e., close to the top of the barrier. 
This Eckart barrier has a height V0 (as defined in eq 
47) of only 0.174 eV (compared to V0 = 0.424 eV for 
the Shavitt barrier) and therefore has a false bottom 
0.250 eV above the correct one. He computed the 
corresponding tunneling factors which he considered 
to be the best available estimate of the exact ones for 
the Shavitt barrier. By using the numerical method 
of the present article we can compute the transmission 
functions for any potential barrier and we need not re­
sort to fits with Eckart barriers. From these monoen-

(61) I. Shavitt, University of Wisconsin Theoretical Chemistry 
Laboratory Technical Report No. WIS-AEC-23, 1959. 

Figure 6. Transmission probability vs. reduced translational 
energy for D + D2. Same abcissa and convention as for Figure 5. 

ergetic transmission functions we compute the tunneling 
factors as described above. 

The exact transmission probabilities for some of the 
barriers discussed above are shown in Figure 5 for the 
H + H2 and in Figure 6 for D + D2. Figure 5 shows 
that the transmission probability curves for the reaction 
path c barrier (see Table II) and for the usual Eckart 
barrier (which has the same height and curvature at the 
top as the reaction path b barrier) cross at a translational 
energy about equal to the barrier height. However, the 
Eckart barrier is thinner and it is associated with greater 
quantum effects (more tunneling for energies below the 
barrier height and more reflection for energies above it). 
The transmission probability curve computed from 
Shavitt's false-bottom Eckart barrier does not cross the 
other curves at an energy equal to the barrier height 
energy. Thus his barrier does not appear to be a quali­
tatively correct approximation to an 0.424-eV barrier. 
It systematically predicts too much tunneling. Figure 6 
shows that, as expected, the quantum effects are more 
important for H + H2 than for D + D2. 

Columns 2 and 3 of Table IV show respectively the 
tunneling factors for the H + H2 reaction computed 
using Shavitt's method (the 0.174-eV high Eckart bar­
rier) and those we computed numerically for the exact 
Shavitt barrier (reaction path b, see Table II). Column 
4 shows the tunneling factors we computed numerically 
for the accurate fit to the correct minimum energy path 
obtained from the scaled SSMK surface (see Table II). 
Columns 2-4 of Table V show the corresponding tun­
neling factors for the D + D2 reaction. 

For comparison with these attempts to do the prob­
lem more accurately than it is usually done, we also 
computed the tunneling factors using the usual Eckart 
barrier treatment (correct barrier height and curvature 
at top). The results are given in column 6 of Table IV 
and column 5 of Table V. 

The tunneling factors in columns 2-4 and 6 in Table 
IV and columns 2-5 of Table V are based on the con-
servation-of-vibrational-energy approximation. We 
also computed tunneling factors using the vibrationally 
adiabatic quantum barrier presented earlier in this arti­
cle. These tunneling factors are given in column 5 of 
Table IV. The transmission functions from which these 
tunneling factors are computed are compared with the 
corresponding CVE ones in Figure 7. The tunneling 
factors differ from each other much less than the trans­
mission functions do because they are compared to the 
classical transmission functions for corresponding (dif­
ferent) barriers (see eq 44 and 46). If the two quantum 
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Table IV. Tunneling Factors for H + H2 Reaction Computed for Five Barriers Discussed in the Text 

T, 0K 

150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 
900 
950 

1000 
1050 
1100 
1150 
1200 
1250 

Shavitt Eckart 
barrier" 

502.30 
45.00 
13.13 
6.49 
4.17 
3.11 
2.53 
2.17 
1.93 
1.77 
1.65 
1.56 
1.48 
1.43 
1.38 
1.34 
1.31 
1.28 
1.26 
1.24 
1.22 
1.21 
1.19 

Shavitt barrierb 

/ 
57.39 
11.25 
5.09 
3.26 
2.47 
2.05 
1.80 
1.63 
1.52 
1.43 
1.37 
1.32 
1.28 
1.25 
1.22 
1.20 
1.18 
1.16 
1.15 
1.14 
1.13 
1.12 

Correct scaled 
SSMK barrier= 

f 
83.48 
14.74 
6.21 
3.80 
2.79 
2.26 
1.95 
1.75 
1.61 
1.51 
1.44 
1.38 
1.33 
1.29 
1.26 
1.23 
1.21 
1.19 
1.18 
1.16 
1.15 
1.14 

VA barrier"* 

4.67 
1.81 
1.35 
1.19 
1.11 
1.07 
1.04 
1.03 
1.02 
1.01 
1.00 
1.00 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

Eckart barrier" 

/ 
666.25 
44.10 
11.59 
5.61 
3.63 
2.74 
2.25 
1.96 
1.76 
1.62 
1.52 
1.44 
1.39 
1.34 
1.30 
1.27 
1.24 
1.22 
1.20 
1.18 
1.17 
1.15 

° K0 = 0.174 eV. Eckart barrier of ref 36 (false bottom). These tunneling factors are exactly the same if they are computed in the stan­
dard way for this barrier with K0 = 0.174 eV as if they are computed for this barrier with the asymptotic floor raised and K0 = 0.424 eV as 
discussed in the caption of Figure 5. We use the latter interpretation. b Numerical calculation for the exact Shavit barrier36 (reaction path b, 
see the first three columns of Table II). * Numerical calculation for the normal-mode-coordinates reaction path barrier c (see Tables I and 
the last three columns of Table II). d Numerical calculation for the barrier of Table III. e K0 = 0.424 eV. Usual Eckart barrier (correct 
height and curvature at top). / These results at 1500K are so large that they are probably not meaningful. 

Table V. Tunneling Factors for D + D2 Reaction Computed 
for Four Barriers Discussed in the Text 

r, 0K 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 
900 
950 

1000 
1050 
1100 
1150 
1200 
1250 

Shavitt 
Eckart 
barrier" 

61.17 
10.24 
4.52 
2.91 
2.23 
1.88 
1.66 
1.53 
1.43 
1.36 
1.31 
1.27 
1.23 
1.21 
1.19 
1.17 
1.15 
1.14 
1.13 
1.12 
1.11 
1.10 
1.10 

Shavitt 
barrier6 

60.74 
6.91 
3.15 
2.17 
1.75 
1.54 
1.41 
1.32 
1.26 
1.22 
1.18 
1.16 
1.14 
1.12 
1.11 
1.10 
1.09 
1.08 
1.07 
1.07 
1.06 
1.06 
1.05 

Correct 
scaled 
SSMK 
barrier0 

104.91 
9.90 
4.01 
2.58 
2.00 
1.70 
1.53 
1.42 
1.34 
1.28 
1.24 
1.21 
1.18 
1.16 
1.14 
1.13 
1.11 
1.10 
1.10 
1.09 
1.08 
1.08 
1.07 

Eckart 
barrier"1 

24.45 
6.09 
3.26 
2.33 
1.90 
1.65 
1.50 
1.40 
1.38 
1.28 
1.24 
1.21 
1.18 
1.16 
1.14 
1.13 
1.12 
1.11 
1.10 
1.09 
1.08 
1.08 

" K0 = 0.174 eV. Eckart barrier of ref 36 (false bottom). 
b Numerical calculation for the exact Shavitt barrier36 (reaction 
path b; see Table II). e Numerical calculation for the normal-
mode-coordinates barrier (reaction path c; see Tables I and II). 
d Vo = 0.424 eV. Eckart-barrier calculation the way it is usually 
done (this barrier has same height and curvature at top as the classi­
cal potential energy barrier for either path b or path c). 

mechanical transmission functions were both compared 
to the classical transmission functions for the VA barrier 
(as the interpretation adopted here implies is correct) then 

the CVE tunneling factors would be much too small. 
The usual CVE treatment thus involves a theoretically 
unjustified renormalization to make the results reason­
able. 
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Figure 7. Transmission probability vs. translational energy for 
path c for H + H2: —, CVE barrier; , VA barrier. The 
vertical lines are drawn at energies corresponding to the heights of 
the respective barriers. 

We also constructed another potential energy surface 
for linear H3. This surface has the analytic form sug­
gested by Wall and Porter.62 It reduced to an accurate 
H2 Morse curve at large H-H2 separations. Three pa­
rameters for this surface are selected to give the scaled 
classical barrier height and scaled asymmetric stretch 
force constant suggested by Shavitt36 and used above, 
and to make the transition state symmetric stretch force 
constant agree with that of the SSMK surface.67 The 
one remaining parameter (/ in the notation of Wall and 
Porter58) is selected to make the position of the mini-

(62) F. T. Wall and R. N. Porter, /. Chem. Phys., 36, 3256 (1962). 
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Figure 8. Tunneling factors for various barriers as a function of 
the reciprocal of the absolute temperature (0K): (A) Shavitt's 
false-bottom Eckart barrier, (B) correct scaled SSMK barrier (path 
c) in normal-mode coordinate space, (C) vibrationally adiabatic 
barrier. Curves A and B are for the CVE model and K0 = 0.424 
eV. Curve C is for the VA model and K0 = 0.277 eV. X's repre­
sent the "correct harmonic oscillator partition function" results of 
LeRoy, Ridley, and Quickert;35 these results are based on the 
CVE model. K0 is not strictly defined in their method but is about 
0.398 eV. 

provides a scaled surface which is well defined in the 
whole R&B,RBC space for linear collisions and is a good 
approximation to the scaled surface suggested but not 
constructed by Shavitt (see the subsection An Accurate 
Analytic Potential Energy Surface for H3). This Wall-
Porter analytic surface has also been used in calculations 
for H + H2 and D + D2 which treat accurately the 2-
MD problem and therefore do not separate the motion 
along the reaction coordinate from the rest of the mo­
tion.63 

The tunneling factors enter the transition state theory 
expression for the rate constant as a multiplicative fac­
tor. A plot of the logarithm of the tunneling factors 
vs. the reciprocal temperature gives curves whose ordi-
nates are additive components of the logarithms of the 
rate constants. When the reaction rate constants are 
put on an Arrhenius plot (logarithm of reaction rate vs. 
the reciprocal of the temperature), the fact that the tun­
neling factors become large faster than linearly at high 
1/T produces curvature on the Arrhenius plots. The 
curvature in the Arrhenius plots of experimental rates is 
usually interpreted as evidence of tunneling. Some of 
the tunneling factors in Table IV are plotted this way in 
Figure 8. The figure also includes for comparison the 
semiempirical tunneling factors obtained by LeRoy, 
Ridley, and Quickert36 using their experimental data 
and their "correct harmonic oscillator partition func­
tion" method. (Their results were very model depen­
dent and do not represent an experimental determina­
tion of the tunneling correction. No accurate experi­
mental determination of this property exists.) The 
figure predicts that the tunneling correction gives a non­
linear contribution to the Arrhenius plot over a wide 
temperature range. 

mum energy path agree well with that of the SSMK sur­
face. Both the barrier from this surface and Shavitt's 
false-bottom Eckart barrier agree with the accurate bar­
rier within 10% to about s = 0.7 a0. At s = 1.0 a0, 
the barrier from the Wall-Porter-type surface is about 
35% low, and Shavitt's false-bottom Eckart barrier is 
about 40% high. Both approximate barriers differ ap­
preciably from the accurate barrier for s > 1.0 a0. 
However, the Wall-Porter-type surface barrier is ac­
curate again for 5 > 3 a0. Calculations in the CVE and 
VA models were carried out for this surface. The re­
sults were qualitatively similar to the ones already de­
scribed (which used the scaled barrier from the 29-pa-
rameter fit to the SSMK surface). The transmission 
functions for the Wall-Porter-type surfaces barriers are 
being published separately.63 For T > 25O0K, the 
Boltzmann tunneling factors for the Wall-Porter-type 
surface VA barrier are smaller than those in column 5 of 
Table IV. For T = 500-6000K, the tunneling factors 
for this surface are a minimum and are 0.90. The tun­
neling factors for the Wall-Porter barrier in the CVE 
model agree with the tunneling factors in column 4 of 
Table IV within about 10% for T > 4000K and within 
30% for T > 3000K. At lower temperatures, they are 
much higher because the barrier is too thin. In general, 
the 1-MD results for the two surfaces show similar 
trends; thus the Wall-Porter surface calibrated this way 

(63) D. G. Truhlar and A. Kuppermann, /. Chem. Phys., 52, 3841 
(1970), and unpublished work. 

Discussion 

The VA model is a consistent model for the linear en­
counter problem and will be discussed as such below. 
The linear VA model should not be applied in this form 
for a description of the three-dimensional reaction. 
This application and the application of a three-dimen­
sional VA model to three-dimensional collisions are dis­
cussed at the very end of this section. 

From an analysis of the results in Tables IV and V, 
the tunneling for the Shavitt barrier can be compared 
to the tunneling for Shavitt's Eckart approximation to 
it. Because the false bottom on his Eckart barrier (see 
the figure in ref 36) makes it too wide at energies much 
below the highest part, Shavitt's method underestimates 
the tunneling at low temperature (as expected) as can 
be seen from the results for T > 2000K in columns 2 
and 3 of Table IV. However, evidently because its 
wrong behavior at large distances from the barrier top 
is equivalent to allowing the particle to surmount a 
large fraction of the barrier with zero reflection, the 
Shavitt Eckart barrier overestimates the tunneling due to 
the barrier over most of the experimentally accessible 
energy range, as indicated by the results at other tem­
peratures in those two columns, as well as by the equiv­
alent columns of Table V. 

The standard Eckart barrier for the CVE model (col­
umn 6 of Table IV and column 5 of Table V) overesti­
mates the tunneling as compared to the accurate treat­
ment of the real barrier because the standard Eckart 
barrier is too thin for H3. Because of the flat region in 
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the VA barrier, it would not be a good approximation 
to fit an Eckart barrier to the H3 VA barrier in the usual 
way. 

The numerical result for the correct scaled SSMK 
barrier computed using the minimum energy path c for 
the normal-mode coordinate space must be considered 
the correct version of Shavitt's CVE model in which two 
aspects of the computations (the position of the mini­
mum energy path and the evaluation of the transmission 
probabilities for the given barrier) are corrected. As 
can be seen from columns 2 and 4 of Tables IV and V, 
these tunneling factors are in good agreement with the 
Shavitt (false bottom) Eckart ones except at low tem­
peratures where they are appreciably higher. As can 
be seen from curve A of Figure 8 and from Figures 3 
and 4 of ref 36, these Shavitt Eckart results are in good 
agreement with experiment except at low temperatures 
(T < 3000K) where they are as much as 40% too low. 
Thus the new CVE results bring the theoretical and ex­
perimental results closer together at these low tempera­
tures. The large errors in the tunneling factors for the 
Eckart approximations (columns 2 and 6 of Table IV 
and 2 and 5 of Table V) to the exact Shavitt barrier (col­
umn 3 of Tables IV and V), especially at low tempera­
tures where the tunneling factor is most important, 
strongly suggest that these approximations should be 
avoided, since it is relatively simple to perform exact cal­
culations, as described above. A similar conclusion 
has been reached recently and independently by LeRoy, 
Quickert, and LeRoy.13 

The tunneling factors computed in the vibrationally 
adiabatic approximations are much different from those 
computed in the conservation-of-vibrational-energy 
approximations as dramatically illustrated by a compar­
ison of columns 4 and 5 of Table IV and curves B and 
C of Figure 8. The tunneling factors computed for the 
wider vibrationally adiabatic Vq(s) barrier are much 
smaller than those computed from the CVE V(s) barri­
ers—as expected. As seen from column 5 of Table IV, 
the tunneling factor for the VA treatment is slightly less 
than 1.0 for a wide temperature range, which means 
that there is more reflection for energies larger than the 
barrier height than tunneling for energies lower than the 
barrier height for a system with a Boltzmann distribution 
of relative translational energies. This last fact is a sur­
prising result. It is the first time tunneling factors less 
than 1.0 have ever been reported. 

Tunneling factors have generally been computed on 
the basis of linear collisions (see the Previous Treatments 
subsection above). The VA model we used to compute 
the tunneling factors is the correct model to use with 
transitions state theory for linear collisions (see ref 8, 
46-47, and 64 and the Transition State Theory subsec­
tion above). Since the CVE results do not resemble 
the VA results, the usual treatment of tunneling appears 
to be theoretically unjustified for collisions in one di-

(64) R. A. Marcus, J. Chem. Phys., 43, 1598 (1965). 

mension. It has not been fully tested for collisions in 
two or three dimensions. Thus, the significance in 
terms of molecular dynamics of any agreement of theory 
and experiment using the CVE models (such as reported 
two paragraphs above) is highly questionable. Includ­
ing the adiabatic change in the rotational levels for col­
lisions in two and three dimensions will make the VA 
barrier resemble the CVE barrier more closely again. 
This is because the rotational and relative orbital mo­
tions have no zero-point energy at large H-H2 separa­
tions, but they become a rotation and a bend at the 
transition state. The bending vibration has a zero-
point energy which raises the VA barrier for configura­
tions close to the transition state. However, the 
amount of agreement of the VA and CVE barriers will 
then depend on summation and cancellation of at least 
two factors (decrease of vibrational energy of the sym­
metric stretching mode and increase of vibrational en­
ergy of the bending mode) and the interpretation will 
still not be straightforward. Further, the cancellation 
of errors may not be as complete for other reactions as 
it is for the H + H2 one. In conclusion, use of the CVE 
barrier in transition state theory is an empirical model 
which has not been theoretically justified, and agreement 
between one-dimensional calculations using it and ex­
periment (as shown in Figure 8) must be attributed to a 
fortuitous cancellation of compensating errors. 

Summary 
Using numerical methods to solve for the exact trans­

mission probabilities for general barriers has allowed us 
to separate the error in the quantum mechanical calcu­
lation of tunneling factors from the errors in the transi­
tion state theory. In this way, we corrected the numer­
ical approximations in Shavitt's definitive transition 
state theory calculations for the usual tunneling model 
on H + H2 and D + D2. Further, we performed accurate 
tunneling calculations in the vibrational adiabatic model 
for the linear H + H2 reaction. One of our conclusions 
is that much of the agreement between theory and ex­
periment (ref 36 and above) obtained using the usual 
methods of calculating the tunneling (which are at least 
implicitly based on the assumption of inactive vibra­
tional modes) is without firm theoretical foundation. 
Accurate tunneling calculations in the vibrational adia­
batic model for the real H + H2 reaction (i.e., the 
H + H2 reaction in three dimensions) will require first 
the determination of the vibrationally adiabatic poten­
tial surface for nonlinear collisions with nonzero impact 
parameter of H with rotating H2. This VA surface has 
not yet been calculated. In a further study of the col-
linear H + H2 reaction, we compare one-mathematical-
dimension calculations of the type presented here with 
exact (two mathematical dimension) calculations.63 
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